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AbstractThe aim of this paper is to perform a mathematical analysis of a Restricted Partitions Problem,for which we incorporate the use of Laurent Polynomials and Cauchy’s Theorem. The approach is asimplified extension to the one given by V. Drinfeld.

1 Introduction
Partition Numbers have been a key research area in the field of Combinatorics, and have played a pivotalrole in deriving subtle, meaningful results which have got their applications in various disciplines. Thispaper presents an extended analysis of a specific problem in Restricted Partitions. The problem is ageneralized version of The Problem of Lucky Tickets. A ticket has a 2n digit number. (The initial digitsare allowed to be zeros). A ticket is called a lucky ticket if the sum of its first n digits is equal to thesum of its last n digits [Lando(2004)]. In his book, Lando mentions that in the early 1970s, A. A. Kirillovwould often open his seminar this way. Although the exact origin of the problem is still unknown, theproblem can be dated back to unknown Russian Legends where a bus ticket has a six-digit number, anda ticket is said to be a "lucky ticket" if the sum of its first three digits equals the sum of its last threedigits. The generalized version of the problem is present on the ACM Timus Online Judge as the "LuckyTickets" problem [ACM(2000)]. The problem also has its mention in the Online Encyclopedia of IntegerSequences as "The Lucky Tickets Problem" [Critzer(2010)]. The problem can be formally stated as follows:
Problem 1. Given a natural number r, such that r is even, find the number of r-digit numbers whose sum
of first r/2 digits coincides with the rest.

Remark : We first derive a recurrence for the above problem, and analyze it further. Let us describe theone-digit numbers by the polynomial U1(z) as;
U1(z) = 1 + z + z2 + ...+ z9

= 9∑
k=0 z

k

Proposition 1.1. The coefficient of zk in the polynomial U coincides with the number of one-digit numbers
having the sum of digits equal to k.

The above proposition is immediately satisfied by realizing that the coefficient of zk in U is 1 providedthat 0 ≤ k < 9 and is 0 for k > 9.
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Proposition 1.2. Let Ur(z) describe all r-digit numbers. The coefficient of zk in the polynomial U coincides
with the number of r-digit numbers having the sum of digits equal to k. And,

Ur(z) = (U1(z))r
Proof. The product of r monomials zm1 , zm2 , zm3 , ..., zmr contributes to the coefficient of the monomial zkin the polynomial (U1(z))r if and only if k = m1 +m2 + ...+mr .Therefore, the coefficient of zk in (U1(z))r is exactly the number of ways to represent k as a sum

k = m1 +m2 + ...+mrwhere
m1, m2, ..., mr ∈ {0, 1, ..., 9}Hence, the polynomial on the right-hand side of the identity coincides with Ur .

Definition 1.3. [Gamelin(2001)] A Laurent polynomial with coefficients in the field F is an algebraic object
that is typically expressed in the form;

...+ a−nt−n + a−(n−1)t−(n−1) + ...+ a−1t−1 + a0 + a1t + ...+ antn + ...

where the ai are elements of F, and only finitely many of the ai are nonzero.

Proposition 1.4. The free term of Laurent polynomial Ur(z)Ur(1/z) coincides with the solution of our
original problem.

Proof. On account of above definition, together with the polynomial Ur(z), consider the Laurent Polynomial
Ur(1/z) in the variable z;

Ur(1/z) = a0 + a1
z + a2

z2 + ...+ a9r
z9rSince the product Ur(z)Ur(1/z) contains monomials of the form zk both with positive and negative k ’s,and the values of k are bounded from below as well as from above, it is a Laurent Polynomial. The freeterm of this Laurent Polynomial is of the form;

a20 + a21 + a22 + a23 + ...+ a29rWhich is exactly equal to the solution of the problem.
2 Analysis
Theorem 2.1. (Generalized Cauchy’s Integeral Theorem)
For a Laurent Series for a complex function f (z) about a point c given by:

f (z) = ∞∑
n=−∞an(z − c)n

The constant an is defined by a line integral which is a generalization of Cauchy’s integral formula:

an = 12πι
∮
γ

f (z)dz(z − c)n+1
The path of integration γ is counterclockwise around a closed, rectifiable path containing no self-
intersections, enclosing c and lying in an annulus A in which f (z) is holomorphic (analytic).
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Corollary 2.2. For any Laurent Polynomial p(z) its free term p0 is

p0 = 12πι
∫ p(z)dz

z ,

where the integral is taken over an arbitrary counterclockwise oriented circle in the complex plane
containing the origin.Following the above result, we choose the unit circle centered at the origin. Now, since

U1(z) = 1 + z + z2 + ...+ z9 = 1− z101− zWe represent our Laurent polynomial in the form
P(z) = Ur(z)Ur (1

z

) = Ur1(z)Ur1
(1
z

)
= (1− z101− z

)r (1− z−101− z−1
)r

= (2− z10 − z−102− z − z−1
)r

Introducing the standard parameter φ in the unit circle and restricting the Laurent polynomial P(s)to this circle we obtain the following expression for the free term of the polynomial:
p0 = 12π

∫ 2π
0
(2− 2 cos 10φ2− 2 cosφ

)r
dφ = 12π

∫ 2π
0
(sin 5φsin φ2

)2r
dφ (1)

= 1
π

∫ π

0
(sin 10φsin φ2

)2r
dφ (2)

= 1
π

∫ π2
− π2
(sin 10φsinφ

)2r
dφ (3)

We need to evaluate the value of the above integral to find a generalized solution to our problem. Wefirst choose to estimate the value of the integral using various mathematical methods of estimation andthen compare the estimated value to the exact value computed using a computer.
The integral contains the function

f (φ) = sin 10φsinφ (4)
We use the graph of the function f to analyze and estimate its value in the closed interval [−π2 , π2 ].Figure 1 shows the graph of the function f (φ) = sin 10φsinφ
As exemplified in the graph, The function has a maximum value equal to 10, at the origin. The valueof f out of the segment [− π10 , π10] is less than 1sin π10 ≈ 3
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Figure 1: Graph of f (φ) = sin 10φsinφ
In the segment [− π10 , π10], the function touches its maximum value and thus the contribution of thissegment is much larger than its counterpart.To estimate this contribution we make use of the method of the stationary phase.[Bleistein and Handelsman(1975)]Consider the integral

I = lim
λ→∞

∫ ∞
−∞

dx e−λg(x) (5)
If g(x) has a global maxima at x = x0, i.e.; g′(x) = 0 then the major contributions to the above integral,as λ → ∞ will come from the integration region around x = x0. Thus, we may expand g(x) about thispoint:

g(x) = g(x0) + g′(x0)(x − x0) + 12g′′(x0)(x − x0)2 + ...

Since g′(x0) = 0, this becomes:
g(x) ≈ g(x0) + 12g′′(x0)(x − x0)2

Inserting the expansion into the expression for I gives
I = lim

λ→∞
e−λg(x0) ∫ ∞

−∞
e−

λ2g(x)(x−x0)2dx (6)
= lim

λ→∞

√ 2π
λg′′(x0)e−λg(x0) by [Fowler(1999)] (7)

The integral (3) can be rewritten as
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∫ π10
− π10

(f (φ))tdφ = ∫ π10
− π10

et ln fdφ (8)
as t → ∞. Comparing the above integral with integral (5), it is satisfied that

g(φ) = − ln f (φ) and λ = t (9)
Thus to estimate our desired integral (3) we need to calculate the value of g′′(φ) at stationary point

φ = 0. From (4) and (9) we have
lim
φ→0g′′(φ) = lim

φ→0
(100 csc2 10φ − csc2 φ) = 33 (10)

Recalling that f (0) = 10, t = 2r and using (10) and (7) to get the estimated value of the integral, andfurther substituting it in (3) we finally obtain;
p0 = 1

π

(
e2r ln 10√ π33r

) (11)
= 102r
√33πr (12)

The above expression is a close approximation to the solution of our original problem
3 Result
The polynomial representation of the r-digit numbers Ur(z) may also be treated as a Laurent Polynomial.The number of r-digit numbers, whose sum of the first r/2 digits coincides with the last r/2 digits, increasesexponentially and has a stationary point at r = 14log10 . The solution obtained in (12) gives the solutionto The Lucky Tickets Problem for r = 3.
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